
Shaoyi Cheng, Qijing Huang, John Wawrzynek
University of California, Berkeley

Binary Synthesis with Runtime
Dependence Validation

FPGA Clouds

Ease of Use

Hardware as a Service

Performance

Cost

A Hard-to-program Device

Design Effort

Quality of Results

CPU FPGA
using HDL CPU

A Hard-to-program Device

Design Effort

Quality of Results

CPU

FPGA
using HLS

FPGA
using HDL

A Hard-to-program Device

Design Effort

Quality of Results

CPU

FPGA
using HLS

➔ Insert Pragmas
➔ Different buffering schemes
➔ Different programming

paradigms (Pthread, OpenCL)
➔ Rewrite source code

A Hard-to-program Device

Design Effort

Quality of Results

CPU

FPGA
using HLS

With understanding of HW
and what HLS does

CPU

A Hard-to-program Device

Design Effort

Quality of Results

CPU FPGA
using HDL

FPGA
using HLS

A Hard-to-program Device

Design Effort

Quality of Results

CPU FPGA
using HDL

FPGA
using HLS

With
Program
Binaries

A Hard-to-program Device

Design Effort

Quality of Results

CPU FPGA
using HDL

FPGA
using HLS

With
Program
Binaries

Automation

User-transparent
Accelerator Integration

Program Binaries

Push the limit in ease of use:
Program binaries as design entry

● Non-invasive
● Libraries without source code
● Languages not currently

supported by HLS

● Input: Program binaries and execution profiles
○ Assume no other user input
○ Leverage techniques from parallelizing compilers
○ Automatically exploit coarse-grained parallelism

● Targeting platforms: With shared CPU and FPGA address space
○ Existing FPGA SoCs -> ZynQ Platform
○ FPGA+Xeon Platform

Binary Synthesis

Coarse-grained Parallelism
When the memory locations accessed in loop iterations do
not intersect

Coarse-grained Parallelism
When the memory locations accessed in loop iterations do
not intersect:

Coarse-grained Parallelism
When the memory locations accessed in loop iterations do
not intersect:

Potentially many address
comparisons for aggressive
parallelization.

Coarse-grained Parallelism
When the memory locations accessed in loop iterations do
not intersect

Regular computation kernels:
➔ Affine array references
➔ Whether they intersect can be

determined statically

Our Target:

Affine Array References
Diophantine Equation:
a0+a1x1+a2x2+… anxn

 – (b0+b1y1+b2y2+… bnyn) = 0 ?

Affine function of the indices

Affine Array References
Diophantine Equation:
a0+a1x1+a2x2+… anxn

 – (b0+b1y1+b2y2+… bnyn) = 0 ?

Existing techniques for identifying
parallelism:
➔ GCD test, Banerjee’s test, Omega

test etc.

c + 4*i*10 + 4*j = a + 4*i’*10 + 4*k’ ?

Omits the “restrict” keyword

Challenges
Iteration Space:

[r3initial, r3+r6 …, r5]

Equation:
r0 + (r3initial + r6 * i)

 = r2 + (r3initial+ r6 * i’) Not Statically
Solvable!

Offline Profiling
From Past Profiles

Dependency Analysis
(Banerjee’s Test)

Parallelizable?

Runtime Validation
Equation:

r0 + (r3initial + r6 * i)
 = r2 + (r3initial+ r6 * i’)

What if r0+r6 = r2 when the

FPGA accelerator is invoked?

Rerun the Banerjee’s test during the
actual execution,

before test accelerator starts

A Two-phase Approach
1. Offline Phase

Software Profiler

Online Test Generator

Dependency InfoPotential Parallel
Affine Loops

Decompiler

C code

Process Network
Generator

+
HLS Tools

Instrumentation Tool

Potential Parallel
Affine Loops

Online Tester

Parallel &
Efficient?

Yes

No

Program Binaries Program Binaries

Hardware
Accelerator

2. Online Phase

Online Decision Model
Evaluate Decision Model

St(I) - Ht(I) >> Dt

Run the Original Program Binary

Perform SWcheck:
Banerjee’s gives negative

results

EST
CHECK

EXEsw

Invoke Hardware Accelerator

EXEhw

Steps Taken Performance Benefits

Best EST->CHECK->EXEhw St(I) - Ht(I) - Dt - Et

Early Abort EST->EXEsw - Et

Worst Case EST->CHECK->EXEsw - Dt - Et

YES

NO
YESNO

Experiments
➔ Validate the binary based flow
➔ Four regular kernels:

◆ Gems FDTD Simulation, Matrix Multiplication, Sober Edge Detector,
K-Nearest Neighbors

➔ Vary the degree of parallelism to fill up the area
➔ Vary the number of ports
➔ Quantify the runtime overhead
➔ Compare against Software performance on Arm

Cortex-A9 running at 667MHz

Results - Performance

● More aggressive parallelization -> higher performance
● Convolution is compute-bound

Results - Performance

● Open more ports to memory -> higher performance
● GemsFDTD and KNN in larger size is memory-bound Up to 9.5x Speedup

Results - Runtime Overhead

Insignificant
overhead
except for
small grid size

GemsFDTD

Results - Runtime Overhead
Matrix Multiplication

Negligible
Overhead

Summary
Our binary synthesis flow:
1. Complements existing HLS flow
2. Generates design with good performance
3. Offloads computation in user transparent way
4. Improves the ease of use for FPGA

Future work:
● More aggressive optimizations with runtime validation methodology
● More complicated runtime generated binaries
● Apply to other heterogeneous platforms

Thanks!

Questions

Backup Slides

Process Network Generation
➔ Transform sequential programs to process networks

◆ A parallel model of computation
◆ Processes executed concurrently
◆ Processes connected by FIFOs

● Blocking reads
● Blocking writes in real implementation

from Centralized
to Distributed Control

System Integration
➔ Leverage existing API for binary instrumentation (Dyinst):
1. Supports both static and dynamic modification of binaries
2. Abstract away the details of the low-level machine code

➔ Package the validation routine and accelerator invocation
into a function

➔ Redirect the binary to call the new function

May apply to other type of
heterogeneous computing platforms.

A Two-phase Approach

Affine Array References
Diophantine Equation:
a0+a1x1+a2x2+… anxn

 – (b0+b1y1+b2y2+… bnyn) = 0 ?

c + 4*i*10 + 4*j = a + 4*i’*10 + 4*k’

