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➔ Insert Pragmas 
➔ Different buffering schemes
➔ Different programming 

paradigms (Pthread, OpenCL)
➔ Rewrite source code
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User-transparent
Accelerator Integration

Program Binaries 

Push the limit in ease of use:
Program binaries as design entry

● Non-invasive
● Libraries without source code
● Languages not currently 

supported by HLS 



● Input: Program binaries and execution profiles
○ Assume no other user input
○ Leverage techniques from parallelizing compilers
○ Automatically exploit coarse-grained parallelism

● Targeting platforms:  With shared CPU and FPGA address space 
○ Existing FPGA SoCs -> ZynQ Platform 
○ FPGA+Xeon Platform

Binary Synthesis 
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Coarse-grained Parallelism
When the memory locations accessed in loop iterations do 
not intersect:

Potentially many address 
comparisons for aggressive 
parallelization.



Coarse-grained Parallelism
When the memory locations accessed in loop iterations do 
not intersect

Regular computation kernels:
➔ Affine array references
➔ Whether they intersect can be 

determined statically

Our Target:



Affine Array References 
Diophantine Equation:
a0+a1x1+a2x2+… anxn

                        – (b0+b1y1+b2y2+… bnyn) = 0 ?

Affine function of the indices 



Affine Array References 
Diophantine Equation:
a0+a1x1+a2x2+… anxn

                        – (b0+b1y1+b2y2+… bnyn) = 0 ?

Existing techniques for identifying 
parallelism:
➔ GCD test, Banerjee’s test, Omega 

test etc.

c + 4*i*10 + 4*j = a + 4*i’*10 + 4*k’ ? 

Omits the  “restrict” keyword



Challenges 
Iteration Space: 

[r3initial, r3+r6 …, r5]

Equation: 
r0 + (r3initial + r6 * i )

        = r2 + (r3initial+ r6 * i’)  Not Statically 
Solvable! 



Offline Profiling 
From Past Profiles

Dependency Analysis 
(Banerjee’s Test)

Parallelizable?



Runtime Validation 
Equation: 

r0 + (r3initial + r6 * i)
        = r2 + (r3initial+ r6 * i’) 

What if r0+r6 = r2 when the 

FPGA accelerator is invoked?

Rerun the Banerjee’s test during the 
actual execution, 

before test accelerator starts



A Two-phase Approach
1. Offline Phase 

Software Profiler 

Online Test Generator

Dependency InfoPotential Parallel 
Affine Loops

Decompiler

C code 

Process Network 
Generator 

+ 
HLS Tools

Instrumentation Tool

Potential Parallel 
Affine Loops

Online Tester

Parallel &
Efficient?

Yes

No

Program Binaries Program Binaries

Hardware 
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2. Online Phase 



Online Decision Model
Evaluate Decision Model 

St(I) - Ht(I) >> Dt

   

Run the Original Program Binary 

Perform SWcheck:
Banerjee’s  gives negative 

results

EST
CHECK

EXEsw

   

Invoke Hardware Accelerator

EXEhw

Steps Taken Performance Benefits

Best EST->CHECK->EXEhw St(I) - Ht(I) - Dt - Et

Early Abort EST->EXEsw - Et

Worst Case EST->CHECK->EXEsw - Dt - Et

YES

NO
YESNO



Experiments 
➔ Validate the binary based flow
➔ Four regular kernels: 

◆ Gems FDTD Simulation, Matrix Multiplication, Sober Edge Detector, 
K-Nearest Neighbors

➔ Vary the degree of parallelism to fill up the area
➔ Vary the number of ports
➔ Quantify the runtime overhead 
➔ Compare against Software performance on Arm 

Cortex-A9 running at 667MHz



Results - Performance

● More aggressive parallelization ->  higher performance
● Convolution is compute-bound



Results - Performance

● Open more ports to memory -> higher performance
● GemsFDTD and KNN in larger size is memory-bound Up to 9.5x Speedup



Results - Runtime Overhead

Insignificant 
overhead 
except for 
small grid size

GemsFDTD



Results - Runtime Overhead
Matrix Multiplication

Negligible 
Overhead



Summary 
Our binary synthesis flow: 
1. Complements existing HLS flow
2. Generates design with good performance 
3. Offloads computation in user transparent way
4. Improves the ease of use for FPGA

Future work: 
● More aggressive optimizations with runtime validation methodology 
● More complicated runtime generated binaries 
● Apply to other heterogeneous platforms 



Thanks!



Questions



Backup Slides



Process Network Generation
➔ Transform sequential programs to process networks

◆ A parallel model of computation
◆ Processes executed concurrently
◆ Processes connected by FIFOs

● Blocking reads
● Blocking writes in real implementation



from Centralized 
to Distributed Control



System Integration 
➔ Leverage existing API for binary instrumentation (Dyinst): 
1. Supports both static and dynamic modification of binaries 
2. Abstract away the details of the low-level machine code 

➔ Package the validation routine and accelerator invocation 
into a function 

➔ Redirect the binary to call the new function

May apply to other type of 
heterogeneous computing platforms. 



A Two-phase Approach



Affine Array References 
Diophantine Equation:
a0+a1x1+a2x2+… anxn

                        – (b0+b1y1+b2y2+… bnyn) = 0 ?

c + 4*i*10 + 4*j = a + 4*i’*10 + 4*k’ 




