

Synetgy: Algorithm-hardware Co-design for ConvNet Accelerators on Embedded FPGAs

Yifan Yang^{1,2}, <u>Qijing Huang¹</u>, Bichen Wu¹, Tianjun Zhang¹, Liang Ma³, Giulio Gambardella⁴, Michaela Blott⁴, Luciano Lavagno³, Kees Vissers⁴, John Wawrzynek¹, and Kurt Keutzer¹

¹University of California, Berkeley, ²Tsinghua University, ³Politecnico di Torino, and ⁴Xilinx Research Labs

- Introduction
- ConvNet Design
- Hardware Accelerator Design
- Experimental Results
- Conclusion

Berkeley DeepDrive

Embedded Computer Vision

Applications

CV Kernels/Tasks

Embedded **Platforms**

Drones

Autonomous Vehicles

Security

cameras

Mobile phones

Image Classification

Object Detection

Semantic Segmentation

CPU

GPU

FPGA

Goals for Embedded CV

 Essential metric for applications like security cameras and autonomous vehicles

 Inference speed and power consumption constrain the deployment of CV tasks

Berkeley DeepDrive

How to improve accuracy and efficiency?

Design better ConvNet

Design better hardware

ConvNet Design

- CV community has evolved ConvNets for good accuracy efficiency has been less important
- Efficiency proxies have been FLOPs and model size, ignoring hardware friendliness

Computation: 15.8 GOPs/image

NasNet[2] model:

- Parameter size: 5.3 MB
- Computation: 1.28 GOPs/image

[1] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. *arXiv preprint arXiv:1409.1556*, 2014.
[2] Zoph, B., Vasudevan, V., Shlens, J. and Le, Q.V. Learning Transferable Architectures for Scalable Image Recognition. *arXiv e-prints*. 1707-7012.

Hardware Design

- Most work only supports off-the-shelf network designs
- Most effort has focused on reducing precision and on pruning
- Often this throughput improvement comes at the expense of *lower* accuracy

Can we close this gap?

ADEPT

Berkeley DeepDrive

Design better ConvNet

Design better hardware

- Introduction
- ConvNet Design
- Hardware Accelerator Design
- Experimental Results
- Conclusion

ConvNet Design Strategies

- Strategy 1: Use efficient models
- Strategy 2: Simplify operators
- Strategy 3: Quantize

CNN Strategy 1: Use efficient models

- ShuffleNetV2-1.0x [1] as our starting point
- Compared to VGG16:

ADEPT

Berkeley DeepDrive

- 65x fewer OPs
- 48x fewer parameters
- Near equal accuracy on ImageNet

	MACs	#Params	Тор-1 Асс
ShuffleNetV2-1.0x	146M	2.3M	69.4%
VGG16	15.3G	138M	71.5%

ShuffleNetV2

Layer	Output size	KSize	Stride	Repeat	Output channels			
					$0.5 \times$	1×	$1.5 \times$	$2\times$
Image	224×224				3	3	3	3
Conv1	112×112	3×3	2	1	24	94	94	24
MaxPool	56×56	3×3	2	1	24	24	24	24
Stage?	28×28		2	1	48	116	176	244
Stagez	28×28		1	3		110		
St. a. m. 2	14×14		2	1	96	232	352	488
Stages	14×14		1	7				
Stage/	7×7		2	1	192 4	464	704	976
Stage4	7×7		1	3		404		
Conv5	7×7	1×1	1	1	1024	1024	1024	2048
GlobalPool	1×1	7×7						
FC					1000	1000	1000	1000
FLOPs					41M	146M	299M	591M
# of Weights					1.4M	2.3M	3.5M	$7.4 \mathrm{M}$

ADEPT

Berkeley DeepDrive

Macro-architecture

- Can we reduce the number of operator types?
- Can we make the operation more hw-friendly?

• Can we replace 3x3 convolutions?

The Shift Operation

• The shift operation moves a neighboring pixel to the center position

[1] Wu, B., Wan, A., Yue, X., Jin, P., Zhao, S., Golmant, N., Gholaminejad, A., Gonzalez, J. and Keutzer, K. {Shift: A Zero FLOP, Zero Parameter Alternative to Spatial Convolutions}. arXiv e-prints. 1711-8141.

The Shift Operation

 1x1 conv aggregates spatial information along the channel dimension

Replace 3 x 3 Conv

- 3x3 conv:
 - Aggregates
 neighboring pixels
 - Mixes channel info

- shift: Re-aligns pixels
- 1x1 conv: Mixes channel info

Replace 3 x 3 DW Conv

- 3x3 DW conv w/ stride 2:
 - Aggregates
 neighboring pixels
 - Downsamples

- **shift**: Re-aligns pixels
- 2x2 pooling w/ stride 2: Downsamples

Strategy 2: Concatenative Connection

- Concatenative skip connection
 - Achieve similar accuracy
 - Less CPU-FPGA data movement
 - Less on-chip synchronization and buffer
 - Quantization friendly

- 3x3 max-pooling -> 2x2 max-pooling
- Hw-friendly channel shuffle

(a) Transpose based channel shuffle

- 3x3 max-pooling -> 2x2 max-pooling
- Hw-friendly channel shuffle

Transpose based channel shuffle

- 3x3 max-pooling -> 2x2 max-pooling
- Hw-friendly channel shuffle

Transpose based channel shuffle

- 3x3 max-pooling -> 2x2 max-pooling
- Hw-friendly channel shuffle

- 3x3 max-pooling -> 2x2 max-pooling
- Hw-friendly channel shuffle

- 3x3 max-pooling -> 2x2 max-pooling
- Hw-friendly channel shuffle

- 3x3 max-pooling -> 2x2 max-pooling
- Hw-friendly channel shuffle

- 3x3 max-pooling -> 2x2 max-pooling
- Hw-friendly channel shuffle

ShuffleNetV2 -> DiracDeltaNet

- Accuracy (full precision): 69.4%
- **Operators involved:**
 - 1x1 convolution
 - 3x3 convolution
 - 3x3 DW convolution
 - 3x3 max pooling
 - Channel split/shuffle/concat

- Accuracy (full precision): 69.7% •
- Operators involved:
 - 1x1 convolution
 - 2x2 max pooling
 - Channel split/shuffle/shift/concat

Berkeley DeepDrive

- Quantization has been mostly demonstrated on large networks. Is it effective on the small ones like DiracDeltaNet?
- We used existing quantization methods:
 - DoReFaNet [1] method for weights
 - Modified PACT [2] method for activations
- We achieved 4-bit weight and 4-bit activation precision with competitive accuracy

	Network	Pruning	Precision	Тор-1 Асс
[3]	VGG16	Yes	8-8b	67.72%
Ours	DiracDeltaNet	No	4-4b	67.52%

[1] Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H. and Zou, Y. {DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients}. arXiv eprints. 1606-6160.

[2] Choi, J., Wang, Z., Venkataramani, S., I-Jen Chuang, P., Srinivasan, V. and Gopalakrishnan, K.PACT: Parameterized Clipping Activation for Quantized Neural Networks.
 [3] Guo, K., Han, S., Yao, S., Wang, Y., Xie, Y. and Yang, H. Software-Hardware Codesign for Efficient Neural Network Acceleration. IEEE Micro

- Introduction
- ConvNet Design
- Hardware Accelerator Design
- Experimental Results
- Conclusion

Can we close this gap?

ADEPT

Berkeley DeepDrive

Design better ConvNet

Design better hardware

- Strategy 1: Specialize conv engine
- Strategy 2: Use dataflow architecture
- Strategy 3: Merge layers

Design better hardware

- 1x1 Conv Unit:
 - Supports matrix-vector multiplication
 - 4-bit inputs
 - 4-bit weights
 - 17-bit partial sums
 - Buffers weights and partial sums on-chip
 - Performs 32 x 32 MACs per iteration
 - Each input gets reused output channel size times

- 1x1 conv
 - No line-buffer
- shift

ADFPT

Berkeley DeepDrive

- 3x3 sliding window, II=1
- 2x2 max-pooling
 - -2x2 sliding window, II=2

4	2	5	6	9			
1	3	8	7	3			
6	4	2	8	1			

- 1x1 conv
 - No line-buffer
- shift

ADFPT

Berkeley DeepDrive

- 3x3 sliding window, II=1
- 2x2 max-pooling
 - -2x2 sliding window, II=2

4	2	5	6	9
1	3	8	7	3
6	4	2	8	1
	/			
4				

- 1x1 conv
 - No line-buffer
- shift

ADFPT

Berkeley DeepDrive

- 3x3 sliding window, II=1
- 2x2 max-pooling
 - -2x2 sliding window, II=2

4	2	5	6	9
1	3	8	7	3
6	4	2	8	1

- 1x1 conv
 - No line-buffer
- shift

ADEPT

Berkeley DeepDrive

- 3x3 sliding window, II=1
- 2x2 max-pooling
 - -2x2 sliding window, II=2

- 1x1 conv
 - No line-buffer
- shift

ADEPT

Berkeley DeepDrive

- 3x3 sliding window, II=1
- 2x2 max-pooling
 - -2x2 sliding window, II=2

Strategy 3: Merge layers

- Conversion unit includes:
 - Batch Norm
 - ReLU

ADEPT

Berkeley DeepDrive

- Modified PACT
- It performs 17-bit to 4-bit conversion
- It is implemented with comparators

Synetgy Architecture Overview

- HW engine supports:
 - 1x1 conv
 - 2x2 max-pooling
 - shift
 - shuffle
- Layer-based design
- Implemented with Vivado HLS and PYNQ

Berkeley DeepDrive

- Introduction
- ConvNet Design
- Hardware Accelerator Design
- Experimental Results
- Conclusion

Experimental Setup

- Avnet Ultra96 Board
- With Xilinx ZU3EG FPGA the second smallest device in the Ultrascale+ family

Resource Usage

LUT	FF	BRAM	DSP
51776(73.4%)	42257(29.9%)	159(73.6%)	360(100%)

erkelev DeepDrive

- LUT: 4/4bit multiplications (1x1 conv)
- FF: fully-partitioned partial sums (1x1 conv)
- BRAM: line buffers and FIFOs (dataflow)
- DSP: 4/4bit multiplications (1x1conv)

On-chip Layout

Berkeley DeepDrive

Comparison with Previous Work

	Platform	Framerate	Тор-1 Асс	Precision	Energy/ Frame (J)
[1]	Zynq 7Z020	5.7	67.72%	8-8b	0.526
[2]	Zynq 7Z045	4.5	64.64%	16-16b	0.666
[3]	Stratix-V	3.8	66.58%	8-16b	5.026
Ours	Zynq ZU3EG	66.3	67.52%	4-4b	0.083

- Equal top-1 accuracy
- 11.6x higher framerate
- 6.3x more power efficient

Guo, K., Han, S., Yao, S., Wang, Y., Xie, Y. and Yang, H. Software-Hardware Codesign for Efficient Neural Network Acceleration. IEEE Micro, 37 (2). 18-25.
 Qiu, J., Wang, J., Yao, S., Guo, K., Li, B., Zhou, E., Yu, J., Tang, T., Xu, N., Song, S., Wang, Y. and Yang, H. Going Deeper with Embedded {FPGA} Platform for Convolutional Neural Network, 2016, 26-35.

[3] Suda, N., Chandra, V., Dasika, G., Mohanty, A., Ma, Y., Vrudhula, S.B.K., Seo, J.S. and Cao, Y. Throughput-Optimized OpenCL-based {FPGA} Accelerator 50 for Large-Scale Convolutional Neural Networks, 2016, 16-25.

Batch Size	1	2	4	8	16
Framerate (fps)	41.4	53.6	62.6	65.6	66.3

- Mitigate software API call (Python) overhead
 - Accelerator runtime (batch=1) 0.15ms
 - API call 0.40ms
- More activation and weight reuse leads to better performance

- Introduction
- ConvNet Design
- Hardware Accelerator Design
- Experimental Results
- Conclusion

Algorithm-hardware co-design can achieve both high accuracy (67.5% top-1) and good efficiency (66 FPS) for embedded CV applications

Design better ConvNet

Design better hardware

Future Work

Automate the co-design process

- More comprehensive deep neural network search
- More comprehensive HW design space exploration

Thank you! Q&A