
Algorithm-Hardware Co-design
for Deformable Convolution

Qijing Huang*, Dequan Wang*, Yizhao Gao †, Yaohui Cai ‡,
Zhen Dong, Bichen Wu, Kurt Keutzer, John Wawrzynek

University of California, Berkeley
†University of Chinese Academy of Science

‡Peking University

EMC2 Workshop @ NeurIPS 2019

Motivation
• Deformable Convolution is an input-adaptive dynamic operation that samples

inputs from variable spatial locations
• Its sampling locations vary with:

• Different input images
• Different output pixel locations

• It captures the spatial variance of objects with different:
• Scales
• Aspect Ratios
• Rotation Angles

• Challenges:
• Increased compute and memory requirements
• Irregular input-dependent memory access patterns

• Not friendly for dataflows that leverage the spatial reuse

10

Motivation
• Deformable Convolution is an input-adaptive dynamic operation that samples

inputs from variable spatial locations
• Its sampling locations vary with:

• Different input images
• Different output pixel locations

• It captures the spatial variance of objects with different:
• Scales
• Aspect Ratios
• Rotation Angles

• Challenges:
• Increased compute and memory requirements
• Irregular input-dependent memory access patterns

• Not friendly for dataflows that leverage the spatial reuse

11

1. Generate offsets
2. Sample from input

feature map

Motivation
• Deformable Convolution is an input-adaptive dynamic operation that samples

inputs from variable spatial locations
• Its sampling locations vary with:

• Different input images
• Different output pixel locations

• It captures the spatial variance of objects with different:
• Scales
• Aspect Ratios
• Rotation Angles

• Challenges:
• Increased compute and memory requirements
• Irregular input-dependent memory access patterns

• Not friendly for dataflows that leverage the spatial reuse

12

Motivation
• Deformable Convolution is an input-adaptive dynamic operation that samples

inputs from variable spatial locations
• Its sampling locations vary with:

• Different input images
• Different output pixel locations

• It captures the spatial variance of objects with different:
• Scales
• Aspect Ratios
• Rotation Angles

• Challenges:
• Increased compute and memory requirements
• Irregular input-dependent memory access patterns

• Not friendly for dataflows that leverage the spatial reuse

13

Sampling Locations (in red) for Different Output Pixels (in green)

Motivation
• Deformable Convolution is an input-adaptive dynamic operation that samples

inputs from variable spatial locations
• Its sampling locations vary with:

• Different input images
• Different output pixel locations

• It captures the spatial variance of objects with different:
• Scales
• Aspect Ratios
• Rotation Angles

• Challenges:
• Increased compute and memory requirements
• Irregular input-dependent memory access patterns

• Not friendly for dataflows that leverage the spatial reuse

14

Motivation
• Deformable Convolution is an input-adaptive dynamic operation that samples

inputs from variable spatial locations
• Its sampling locations vary with:

• Different input images
• Different output pixel locations

• It captures the spatial variance of objects with different:
• Scales
• Aspect Ratios
• Rotation Angles

• Challenges:
• Increased compute and memory requirements
• Irregular input-dependent memory access patterns

• Not friendly for dataflows that leverage the spatial reuse

15

Variable Receptive Fields

Motivation
• Deformable Convolution is an input-adaptive dynamic operation that samples

inputs from variable spatial locations
• Its sampling locations vary with:

• Different input images
• Different output pixel locations

• It captures the spatial variance of objects with different:
• Scales
• Aspect Ratios
• Rotation Angles

• Challenges:
• Increased compute and memory requirements
• Irregular input-dependent memory access patterns

• Not friendly for dataflows that leverage the spatial reuse

16

Motivation
• Why codesign algorithm and hardware?

• Inefficient Model Designs – many CV tasks use large inefficient models and
operations solely optimized for accuracy

• Limited Hardware Resources – embedded devices have limited compute
resources and a strict energy and power budgets

• Real-time Requirements – accelerators must guarantee response within certain
time constraints

• Goals: codesign algorithms and accelerators that satisfy embedded
system constraints and fall on the pareto curve of the accuracy-latency
tradeoff.

17

18

(-2, 2.4)

(2, 0.75)

Algorithm-Hardware Codesign
Hardware Optimization: Algorithm Modification:

0. Original Deformable

Accuracy 1(mIoU ↑): 79.9

1 Accuracy for Semantic Segmentation on CityScapes

• Preloads weights to on-chip buffer
• Loads input and offsets directly from

DRAM

Input BufferInput Buffer

19

(2, 1)

(-2, 2)

Algorithm-Hardware Codesign
Hardware Optimization: Algorithm Modification:

1. Rounded Offsets
↓ 0.3

Accuracy 1(mIoU ↑): 79.6
• Reduces the computation for bilinear

interpolation

Input Buffer

1 Accuracy for Semantic Segmentation on CityScapes

20

Δx ≤ 2, Δy ≤ 2

Algorithm-Hardware Codesign
Hardware Optimization: Algorithm Modification:

2. Bounded Range
↓ 0.2

Accuracy 1(mIoU ↑): 79.4
• Buffers inputs in the on-chip

line buffer to allow spatial reuse

1 Accuracy for Semantic Segmentation on CityScapes

Example Sample Distance

Distance Distribution on 5000 images from COCO

22

Algorithm-Hardware Codesign
Hardware Optimization: Algorithm Modification:

↓ 0.7
Accuracy 1(mIoU ↑): 78.7

3. Rectangular Shape
• Improves on-chip memory bandwidth

1 Accuracy for Semantic Segmentation on CityScapes

23

Algorithm-Hardware Codesign
Hardware Optimization: Algorithm Modification:

1 Accuracy for Semantic Segmentation on CityScapes

4. Efficient Feature Extractor
5. Depthwise Convolution

• Reduce the total MACs

241 Accuracy for Semantic Segmentation on CityScapes

Results
Hardware Performance

• Our algorithm-hardware co-design methodology for the deformable convolution
achieves a 1.36× and 9.76× speedup respectively for the
full deformable convolution and depthwise deformable convolution on FPGA

Email: qijing.huang@berkeley.edu

mailto:qijing.huang%7d@berkeley.edu

