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Deformable Convolution is an input-adaptive dynamic operation that samples
inputs from variable spatial locations

Its sampling locations vary with:
« Different input images
» Different output pixel locations

It captures the spatial variance of objects with different:
* Scales
« Aspect Ratios
* Rotation Angles

Challenges:
* Increased compute and memory requirements

« lrregular input-dependent memory access patterns
Not friendly for dataflows that leverage the spatial reuse
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 Why codesign algorithm and hardware?

« Inefficient Model Designs — many CV tasks use large inefficient models and
operations solely optimized for accuracy

« Limited Hardware Resources — embedded devices have limited compute
resources and a strict energy and power budgets

* Real-time Requirements — accelerators must guarantee response within certain
time constraints

« Goals: codesign algorithms and accelerators that satisfy embedded
system constraints and fall on the pareto curve of the accuracy-latency
tradeoff.
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Algorithm Modification: Hardware Optimization:

(-2, 2.4)

.\ z (2, 0.75) - :
‘f.,/. .\. @ DDR 3x3 Dform

Controller ' M2S

0. Original Deformable
* Preloads weights to on-chip buffer

Accuracy '(mloU 1):  79.9 + Loads input and offsets directly from
DRAM
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Algorithm Modification: Hardware Optimization:
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1. Rounded Offsets

0.3  Reduces the computation for bilinear
Accuracy '(mloU 1):  79.6 interpolation
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Algorithm Modification: Hardware Optimization:

AXx<2, Ay <2

OV S

o0 O

1 DDR
./:/ '\. Controller

2. Bounded Range

@ Line Buffer PL

3x3 Deform
M2S

10.2  Buffers inputs in the on-chip
Accuracy '(mloU 1):  79.4 line buffer to allow spatial reuse
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Algorithm Modification: Hardware Optimization:

@ Line Buffer PL

@ Multi-Ports
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3. Rectangular Shape
0.7 * Improves on-chip memory bandwidth

Accuracy '(mloU 1): 78.7
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Algorithm Modification: Hardware Optimization:

@ Line Buffer PL

@ Multi-Ports
> Line2 ] ;

(D DDR

Controller

4. Efficient Feature Extractor
5. Depthwise Convolution

Feature Extractor Operation mloU 7 e Reduce the total MACs
DLA DeformConv 79.9
ShuffleNetV?2 DeformConv 70.1
ShuffleNetV?2 DeformConv + Depthwise 68.0
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Hardware Performance

Operation | Original | Deformable Bound Square Without LLC With LLC

(buffered) | (multi-ported) | Latency (ms) | GOPs | Latency (ms) | GOPs
v 43.1 112.0 41.6 116.2
Full v 59.0 81.8 427 113.1
3x3 Conv v v 434 111.5 41.8 115.5
v v v 434 111.5 41.8 115.6

v 1.9 9.7 2.0 9.6

Depthwise v 20.5 0.9 17.8 1.1

3x3 Conv v v 3.0 6.2 34 5.5

v v v 2.1 9.2 2.3 8.2

* Our algorithm-hardware co-design methodology for the deformable convolution
achieves a 1.36x and 9.76x speedu;) respectively for the .
full deformable convolution and depthwise deformable convolution on FPGA

Email: gijing.huang@berkeley.edu
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