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Motivation
• Deformable Convolution is an input-adaptive dynamic operation that samples 

inputs from variable spatial locations
• Its sampling locations vary with: 

• Different input images
• Different output pixel locations

• It captures the spatial variance of objects with different:
• Scales 
• Aspect Ratios 
• Rotation Angles

• Challenges:
• Increased compute and memory requirements 
• Irregular input-dependent memory access patterns 

• Not friendly for dataflows that leverage the spatial reuse
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1. Generate offsets 
2. Sample from input 

feature map
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Sampling Locations (in red) for Different Output Pixels (in green) 
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Variable Receptive Fields
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Motivation 
• Why codesign algorithm and hardware? 

• Inefficient Model Designs – many CV tasks use large inefficient models and 
operations solely optimized for accuracy   

• Limited Hardware Resources – embedded devices have limited compute 
resources and a strict energy and power budgets 

• Real-time Requirements – accelerators must guarantee response within certain 
time constraints 

• Goals: codesign algorithms and accelerators that satisfy embedded 
system constraints and fall on the pareto curve of the accuracy-latency 
tradeoff.
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(-2, 2.4)

(2, 0.75)

Algorithm-Hardware Codesign 
Hardware Optimization: Algorithm Modification: 

0. Original Deformable

Accuracy 1(mIoU ↑):    79.9 

1 Accuracy for Semantic Segmentation on CityScapes

• Preloads weights to on-chip buffer
• Loads input and offsets directly from 

DRAM

Input BufferInput Buffer
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(2, 1)

(-2, 2)

Algorithm-Hardware Codesign 
Hardware Optimization: Algorithm Modification: 

1. Rounded Offsets 
↓ 0.3

Accuracy 1(mIoU ↑):    79.6 
• Reduces the computation for bilinear 

interpolation

Input Buffer

1 Accuracy for Semantic Segmentation on CityScapes



20

Δx ≤ 2,  Δy ≤ 2 

Algorithm-Hardware Codesign 
Hardware Optimization: Algorithm Modification: 

2. Bounded Range 
↓ 0.2

Accuracy 1(mIoU ↑):    79.4 
• Buffers inputs in the on-chip 

line buffer to allow spatial reuse

1 Accuracy for Semantic Segmentation on CityScapes



Example Sample Distance 

Distance Distribution on 5000 images from COCO



22

Algorithm-Hardware Codesign 
Hardware Optimization: Algorithm Modification: 

↓ 0.7
Accuracy 1(mIoU ↑):    78.7 

3. Rectangular Shape 
• Improves on-chip memory bandwidth 

1 Accuracy for Semantic Segmentation on CityScapes
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Algorithm-Hardware Codesign 
Hardware Optimization: Algorithm Modification: 

1 Accuracy for Semantic Segmentation on CityScapes

4. Efficient Feature Extractor 
5. Depthwise Convolution 

• Reduce the total MACs



241 Accuracy for Semantic Segmentation on CityScapes

Results 
Hardware Performance 

• Our algorithm-hardware co-design methodology for the deformable convolution 
achieves a 1.36× and 9.76× speedup respectively for the 
full deformable convolution and depthwise deformable convolution on FPGA
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