

Algorithm-Hardware Co-design for Deformable Convolution

Qijing Huang*, Dequan Wang*, Yizhao Gao⁺, Yaohui Cai[‡], Zhen Dong, Bichen Wu, Kurt Keutzer, John Wawrzynek

University of California, Berkeley [†]University of Chinese Academy of Science [‡]Peking University

EMC2 Workshop @ NeurIPS 2019

- **Deformable Convolution** is an input-adaptive dynamic operation that samples inputs from variable spatial locations
- Its sampling locations vary with:
 - Different input images
 - Different output pixel locations
- It captures the spatial variance of objects with different:
 - Scales
 - Aspect Ratios
 - Rotation Angles
- Challenges:
 - Increased compute and memory requirements
 - Irregular input-dependent memory access patterns
 - Not friendly for dataflows that leverage the spatial reuse

- **Deformable Convolution** is an input-adaptive dynamic operation that samples inputs from variable spatial locations
- Its sampling locations vary with:
 - Different in
 - Different ou
- It captures the
 - Scales
 - Aspect Rat
 - Rotation Ar
- Challenges:
 - Increasec
 - Irregular i
 - Not frie input feature map

- 1. Generate offsets
- 2. Sample from input feature map

- **Deformable Convolution** is an input-adaptive dynamic operation that samples inputs from variable spatial locations
- Its sampling locations vary with:
 - Different input images
 - Different output pixel locations
- It captures the spatial variance of objects with different:
 - Scales
 - Aspect Ratios
 - Rotation Angles
- Challenges:
 - Increased compute and memory requirements
 - Irregular input-dependent memory access patterns
 - Not friendly for dataflows that leverage the spatial reuse

- **Deformable Convolution** is an input-adaptive dynamic operation that samples inputs from variable spatial locations
- Its sampling locations vary with:
 - Different input images
 - Different output pixel locations
- It captures the spatial variance of objects with different:
 - Scales
 - Aspect Ratic
 - Rotation Ang
- Challenges:

•

- Increased
- Irregular in
- Juireme ccess ¢ ter datatione that foreigned

Not frier any ion data love and in espatial reasons Sampling Locations (in red) for Different Output Pixels (in green)

- **Deformable Convolution** is an input-adaptive dynamic operation that samples inputs from variable spatial locations
- Its sampling locations vary with:
 - Different input images
 - Different output pixel locations
- It captures the spatial variance of objects with different:
 - Scales
 - Aspect Ratios
 - Rotation Angles
- Challenges:
 - Increased compute and memory requirements
 - Irregular input-dependent memory access patterns
 - Not friendly for dataflows that leverage the spatial reuse

- **Deformable Convolution** is an input-adaptive dynamic operation that samples inputs from variable spatial locations
- Its sampling locations vary with:
 - Different input images
 - Different output pixel locations
- It captures the spatial variance of objects with different:
 - Scales
 - Aspect Ratios
 - Rotation Angles
- Challenges:
 - Increased compute and memory requirements
 - Irregular input-dependent memory access patterns
 - Not friendly for dataflows that leverage the spatial reuse

Variable Receptive Fields

- **Deformable Convolution** is an input-adaptive dynamic operation that samples inputs from variable spatial locations
- Its sampling locations vary with:
 - Different input images
 - Different output pixel locations
- It captures the spatial variance of objects with different:
 - Scales
 - Aspect Ratios
 - Rotation Angles
- Challenges:
 - Increased compute and memory requirements
 - Irregular input-dependent memory access patterns
 - Not friendly for dataflows that leverage the spatial reuse

- Why codesign algorithm and hardware?
 - Inefficient Model Designs many CV tasks use large inefficient models and operations solely optimized for accuracy
 - Limited Hardware Resources embedded devices have limited compute resources and a strict energy and power budgets
 - Real-time Requirements accelerators must guarantee response within certain time constraints
- Goals: codesign algorithms and accelerators that satisfy embedded system constraints and fall on the pareto curve of the accuracy-latency tradeoff.

Algorithm Modification:

0. Original Deformable

Accuracy ¹(mIoU ↑): **79.9**

- Preloads weights to on-chip buffer
- Loads input and offsets directly from DRAM

Algorithm Modification:

Reduces the computation for bilinear interpolation

Algorithm Modification:

Hardware Optimization:

(2) Line Buffer PL PS Line 1 LLC Line 2 Line 15 HP 3x3 Deform M2S Controller Offset Weight 3x3 Conv Buffer

Berkeley

Example Sample Distance

Distance Distribution on 5000 images from COCO

Algorithm Modification:

Hardware Optimization:

Improves on-chip memory bandwidth

Algorithm Modification:

Hardware Optimization:

4. Efficient Feature Extractor5. Depthwise Convolution

Feature Extractor	Operation	mIoU↑
DLA	DeformConv	79.9
ShuffleNetV2	DeformConv	70.1
ShuffleNetV2	DeformConv + Depthwise	68.0

Reduce the total MACs

Results

Hardware Performance

Operation	Original	Deformable	Bound	Square	Without LLC		With LLC	
			(buffered)	(multi-ported)	Latency (ms)	GOPs	Latency (ms)	GOPs
	\checkmark				43.1	112.0	41.6	116.2
Full		\checkmark			59.0	81.8	42.7	113.1
3×3 Conv		\checkmark	\checkmark		43.4	111.5	41.8	115.5
		\checkmark	\checkmark	\checkmark	43.4	111.5	41.8	115.6
	\checkmark				1.9	9.7	2.0	9.6
Depthwise		\checkmark			20.5	0.9	17.8	1.1
3×3 Conv		\checkmark	\checkmark		3.0	6.2	3.4	5.5
		\checkmark	\checkmark	\checkmark	2.1	9.2	2.3	8.2

• Our algorithm-hardware co-design methodology for the deformable convolution achieves a **1.36**× and **9.76**× speedup respectively for the *full* deformable convolution and *depthwise* deformable convolution on FPGA

Email: gijing.huang@berkeley.edu

