

# Mind the Gap: Attainable Data Movement and Operational Intensity Bounds for **Tensor Algorithms** Qijing Huang, Po-An Tsai, Joel S Emer, Angshuman Parashar NVIDIA, MIT CSAIL



## Algorithm









## Algorithm









# Algorithm



GPTx

# How to provision chip area between storage and compute?



![](_page_3_Picture_7.jpeg)

# **Approach 1: Design space exploration**

### Algorithm

![](_page_4_Picture_2.jpeg)

![](_page_4_Picture_3.jpeg)

![](_page_4_Figure_4.jpeg)

![](_page_4_Figure_5.jpeg)

![](_page_4_Figure_6.jpeg)

![](_page_4_Figure_7.jpeg)

## Evaluation Time

| ΤοοΙ     | Eval Time |
|----------|-----------|
| Timeloop | 0.01s     |
| FPGA     | 2 mins    |
| VCS      | 10 mins   |
| Power    | 6 hrs     |

![](_page_4_Figure_11.jpeg)

= 31T years

![](_page_4_Picture_14.jpeg)

# Approach 1: Design space exploration

# Algorithm

![](_page_5_Picture_2.jpeg)

GPTx

- Time-consuming and costly
- No optimality guarantee
- Lack of design insight

Architecture Design Space Mapping Space

![](_page_5_Figure_9.jpeg)

![](_page_5_Figure_10.jpeg)

nd costly intee

# Evaluation Time

| ΤοοΙ     | Eval Time |
|----------|-----------|
| Timeloop | 0.01s     |
| FPGA     | 2 mins    |
| VCS      | 10 mins   |
| Power    | 6 hrs     |

![](_page_5_Picture_15.jpeg)

# Approach 2: Roofline model analysis "Speeds and feeds"

### Algorithm

![](_page_6_Picture_2.jpeg)

![](_page_6_Picture_3.jpeg)

# Algo max operational intensity (OI)

### total compute algo min accesses

![](_page_6_Figure_7.jpeg)

### **Operational Intensity**

# **Roofline Model**

![](_page_6_Picture_11.jpeg)

# Approach 2: Roofline model analysis "Speeds and feeds"

## Algorithm

![](_page_7_Picture_2.jpeg)

GPTx

• No buffer storage tradeoffs are present in the analysis

# Algo max operational intensity (OI)

### total compute algo min accesses

![](_page_7_Figure_7.jpeg)

### **Operational Intensity**

# **Roofline Model**

![](_page_7_Picture_11.jpeg)

![](_page_8_Picture_1.jpeg)

### GPTx

# How to provision chip area between storage and compute?

![](_page_8_Figure_4.jpeg)

![](_page_8_Picture_5.jpeg)

# What is missing? The workload does not always operate with algorithmic minimal accesses, or equivalently, algorithmic maximal OI.

8.E+09

4.E+09

0.E+00

# Actual backing-store accesses and OI depend on the mapping and buffer sizes.

![](_page_9_Figure_5.jpeg)

Algo Min DRAM  $\langle -\rangle$  L2 L2  $\langle -\rangle$  L1

![](_page_9_Picture_7.jpeg)

![](_page_9_Picture_9.jpeg)

# A desirable data movement bound

### Matrix Multiplication (GEMM) Einsum: Ν

Z Μ А B Κ

 $Z_{m,n} = A_{m,k} B_{k,n}$ 

M – output row dim K - reduction dim N – output column dim

![](_page_10_Figure_5.jpeg)

# "Ski-slope Diagram"

![](_page_10_Figure_9.jpeg)

# Mind the gap: key design questions

![](_page_11_Figure_1.jpeg)

![](_page_11_Picture_6.jpeg)

![](_page_11_Picture_7.jpeg)

# Mind the gap: key design questions

![](_page_12_Figure_1.jpeg)

![](_page_12_Picture_6.jpeg)

![](_page_12_Picture_7.jpeg)

# Mind the gap: key design questions

in buffer capacity?

![](_page_13_Figure_1.jpeg)

![](_page_13_Picture_5.jpeg)

![](_page_13_Picture_6.jpeg)

![](_page_13_Picture_7.jpeg)

![](_page_14_Picture_0.jpeg)

# Challenges in creating a ski-slope diagram: 1. Need a tractable mapping space 2. Avoid separate mapping search for every buffer size

# Mountain Creation

![](_page_14_Picture_4.jpeg)

| SM                                  |                  |                  |                                |           |                            |               | L1 Inst | ructi | ion Cacl  | 18        |            |                |                       |
|-------------------------------------|------------------|------------------|--------------------------------|-----------|----------------------------|---------------|---------|-------|-----------|-----------|------------|----------------|-----------------------|
| _                                   | _                | L0 Ir            | nstruct                        | ion C     | ache                       | _             | _       |       | _         | _         | -          | LO             | Instr                 |
| _                                   | Wa               | m Sch            | adula                          | 132 +     | hraad                      | (elk)         |         | - 11  |           |           | War        | m Sc           | hadı                  |
| Warp Scheduler (32 thread/clk)      |                  |                  |                                |           | - 11                       |               |         | Prat  | p ac      | neut      |            |                |                       |
| Dispatch Unit (32 thread/clk)       |                  |                  |                                |           | -                          |               |         |       | spare     | an ur     |            |                |                       |
|                                     | Reg              | jister           | File (1                        | 6,384     | 4 x 32                     | :-bit)        |         |       |           |           | Reg        | ister          | r File                |
| INT32                               | FP32 FF          | 232              | FP6                            | 4         |                            |               |         | INT32 | FP32      | FP        | 32         | F              |                       |
| INT32                               | FP32 FF          | 232              | FP6                            | 4         |                            |               |         | INT32 | FP32      | FP        | 32         | F              |                       |
| INT32                               | FP32 FF          | 232              | FP6                            | 4         |                            |               |         | INT32 | FP32      | FP        | 32         | F              |                       |
| INT32                               | FP32 FF          | 232              | FP6                            | 4         |                            |               |         | INT32 | FP32      | FP        | 32         | F              |                       |
| INT32                               | ED32 FF          | 32               | FP6<br>EDe                     | 4<br>4    |                            |               |         |       | INT32     | ED32      | ED         | 32             | r<br>5                |
| INT32                               | EP32 FF          | 32               | FP6                            | 4         |                            |               |         |       | INT32     | FP32      | EP         | 32             | F                     |
| INT32                               | FP32 FF          | 232              | FP6                            | 4         | TENSOR CORE                |               |         |       | INT32     | FP32      | FP         | 32             | F                     |
| INT32                               | FP32 FF          | 232              | FP6                            | 4         | 4 <sup>th</sup>            | GEN           | RATION  |       | INT32     | FP32      | FP         | 32             | F                     |
| INT32                               | FP32 FF          | 232              | FP6                            | 4         |                            | 4 OLIVERATION |         |       | INT32     | FP32      | : FP       | 32             | F                     |
| INT32                               | FP32 FF          | 232              | FP6                            | 4         |                            |               |         |       | INT32     | FP32      | : FP       | 32             | F                     |
| INT32                               | FP32 FF          | 232              | FP6                            | 4         |                            |               |         |       | INT32     | FP32      | : FP       | 32             | F                     |
| INT32                               | FP32 FF          | <b>*</b> 32      | FP6                            | 4         |                            |               |         |       | INT32     | FP32      | FP         | 32             | F                     |
| INT32                               | FP32 FF          | 232              | FP6                            | 4         |                            |               |         |       | INT32     | FP32      | FP         | 32             | F                     |
| IN132                               | FP32 FF          | 32               | FP6                            | 4         |                            |               |         |       | INT32     | FP32      | FP         | 32             | F                     |
| 111132                              | FF92 FF          | 34               | FFO                            | •         |                            |               |         |       | 10102     | rraz      |            | 32             |                       |
| ST                                  | ST ST            | ST               | ST                             | ST        | LDV<br>ST                  | LD/<br>ST     | SFU     |       | LD/<br>ST | ST        | ST         | ST             | S1                    |
|                                     | Wa<br>Di         | rp Sch<br>spatcl | nstruct<br>neduler<br>h Unit ( | (32 th    | ache<br>hread<br>read/o    | /clk)<br>:lk) |         |       | Þ         |           | War<br>Di: | rp Sc<br>spate | hedu<br>hedu<br>:h Ur |
|                                     | Reç              | jister           | File (1                        | 6,384     | I x 32                     | !-bit)        |         |       |           |           | Reg        | ister          | r File                |
| INT32                               | FP32 FF          | 232              | FP6                            | 4         |                            |               |         |       | INT32     | FP32      | FP         | 32             | F                     |
| INT32                               | EP32 FF          | 32               | FP6<br>EDe                     | 4<br>4    |                            |               |         |       | INT32     | FP32      | FP         | 32             | -                     |
| INT32                               | FP32 FF          | 232              | FP6                            | 4         | -                          |               |         | INT32 | FP32      | FP        | 32         |                |                       |
| INT32                               | FP32 FF          | 232              | FP6                            | 4         |                            |               |         |       | INT32     | FP32      | FP         | 32             |                       |
| INT32                               | FP32 FF          | 232              | FP6                            | 4         |                            |               |         |       | INT32     | FP32      | FP         | 32             | F                     |
| INT32                               | FP32 FF          | 232              | FP6                            | 4         |                            |               |         |       | INT32     | FP32      | FP         | 32             | F                     |
| INT32                               | FP32 FF          | 232              | FP6                            | 4         | 4 <sup>th</sup> GENERATION |               |         |       | INT32     | FP32      | FP         | 32             | F                     |
| INT32                               | FP32 FF          | 232              | FP6                            | 4         |                            |               |         |       | INT32     | FP32      | FP         | 32             | F                     |
| INT32                               | FP32 FF          | 232              | FP6                            | 4         |                            |               |         |       | INT32     | FP32      | FP         | 32             | F                     |
| IN132                               | FP32 FF          | /32              | FP6                            | FP64      |                            |               |         |       | INT32     | FP32      | FP         | 32             | F                     |
| INT32                               | EP32 FF          | 32               | FP64                           |           |                            |               |         | INT32 | FP32      | FP<br>FP  | 32         | ľ              |                       |
| INT32                               | FP32 FF          | 232              | FP6                            | 4         |                            |               |         |       | INT32     | EP32      | FP         | 32             | ,<br>,                |
| INT32                               | FP32 FF          | 232              | FP64                           |           |                            |               |         | INT32 | FP32      | FP        | 32         | ļ              |                       |
| INT32                               | 2 FP32 FP32 FP64 |                  |                                |           |                            |               |         | INT32 | FP32      | FP        | 32         | F              |                       |
| LD/<br>ST                           | LD/ LD/<br>ST ST | LD/<br>ST        | LD/<br>ST                      | LD/<br>ST | LD/<br>ST                  | LD/<br>ST     | SFU     |       | LD/<br>ST | LD/<br>ST | LD/<br>ST  | LD/<br>ST      | LC<br>S'              |
| Tensor Memory Accelerator           |                  |                  |                                |           |                            |               |         |       |           |           |            |                |                       |
| 256 KB I 1 Data Cache / Shared Memo |                  |                  |                                |           |                            |               |         |       |           |           |            |                |                       |
|                                     | Tox              |                  |                                |           |                            | Ter           |         |       |           | T         | 'ox        |                | 102                   |
|                                     | TEA              |                  |                                |           |                            | Tex           |         |       |           |           | CA.        |                |                       |

# Real Design

# The Snowcat Architecture Enables exhaustive mapping search

![](_page_15_Figure_4.jpeg)

![](_page_15_Picture_5.jpeg)

 $\infty$ 

![](_page_15_Picture_8.jpeg)

# Snowcat Architecture

![](_page_15_Picture_11.jpeg)

![](_page_16_Picture_0.jpeg)

![](_page_16_Picture_4.jpeg)

### Ski-slope Diagram

![](_page_17_Figure_1.jpeg)

# **OI Bound Derivation**

![](_page_17_Picture_3.jpeg)

### **Ol Bound**

![](_page_17_Picture_6.jpeg)

![](_page_17_Picture_7.jpeg)

![](_page_18_Picture_0.jpeg)

### GEMM Einsum:

![](_page_18_Figure_2.jpeg)

 $Z_{m,n} = A_{m,k} B_{k,n}$ 

M – output row dim K - reduction dim N – output column dim

# **Example** *Orojenesis* Analysis

![](_page_18_Figure_6.jpeg)

![](_page_18_Picture_8.jpeg)

![](_page_18_Picture_11.jpeg)

![](_page_19_Picture_0.jpeg)

![](_page_19_Figure_1.jpeg)

![](_page_19_Picture_5.jpeg)

![](_page_20_Picture_0.jpeg)

### Ski-slope Diagram 1e11 2.5 16k 16k <u>@</u> 2.0 -16k\_ Accesses 1.5 powe ore decrea ਤੋਂ 1.0 <del>|</del> Backing 0.5 -0.0 - $10^{1}$ 10<sup>3</sup> 10 **Buffer Size**

# **Example** *Orojenesis* **Analysis**

|                                 | 4000             |
|---------------------------------|------------------|
| _1k_1k (green)<br>_2k_2k (blue) | 3500             |
| _4k_4k (black)                  | <u>ි</u> 3000    |
|                                 | <u>à</u> 2500    |
| r-law                           | 2000 St          |
| ase                             | <u>a</u><br>1500 |
|                                 | ි<br>1000        |
|                                 | 500              |
|                                 | 0                |
| <sup>5</sup> 10 <sup>7</sup>    | T<br>,           |
| e (B)                           |                  |

![](_page_20_Picture_4.jpeg)

![](_page_20_Figure_5.jpeg)

![](_page_20_Picture_7.jpeg)

![](_page_21_Picture_0.jpeg)

![](_page_21_Figure_1.jpeg)

### The maximal effec for a GEMM is approximately its smallest operand size

# **Example** *Orojenesis* Analysis

|                               | 4000               |
|-------------------------------|--------------------|
| 1k_1k (green)<br>2k_2k (blue) | 3500               |
| 4k (black)                    |                    |
|                               | <u>à</u> 2500      |
|                               | ) St               |
|                               | <u>a</u><br>1500   |
|                               | රි<br>1000         |
|                               | 500                |
|                               | 0                  |
| <sup>5</sup> 10 <sup>7</sup>  | ]                  |
| (B)                           |                    |
| tual buffe                    | er size to achieve |

![](_page_21_Picture_6.jpeg)

![](_page_21_Figure_7.jpeg)

![](_page_21_Picture_10.jpeg)

![](_page_21_Picture_11.jpeg)

**#1: Orojenesis produces bounds that reveal** powerful design insights

![](_page_22_Picture_4.jpeg)

### Inputs

![](_page_23_Picture_1.jpeg)

![](_page_23_Picture_2.jpeg)

# The Orojenesis Fusion Flow

# Unfused Buffer

# **Fusion** is an effective technique to minimize data movement for a chain of operations

![](_page_23_Figure_6.jpeg)

![](_page_23_Picture_8.jpeg)

<mark>></mark> NVIDIA.

![](_page_24_Picture_0.jpeg)

### Producer Incompatible

![](_page_24_Picture_2.jpeg)

![](_page_24_Picture_3.jpeg)

# The Orojenesis Fusion Flow

# **Fusion** imposes extra intra-layer mapping constraints

![](_page_24_Picture_6.jpeg)

![](_page_24_Picture_8.jpeg)

![](_page_25_Figure_0.jpeg)

![](_page_25_Figure_1.jpeg)

# **Fusion Analysis** A chain of 6 operations in GPT-6.7b block

![](_page_25_Picture_4.jpeg)

![](_page_26_Figure_1.jpeg)

ore Accesses(2B) Backing St

# **Fusion Analysis** A chain of 6 operations in GPT-6.7b block

![](_page_26_Picture_7.jpeg)

#2: Orojenesis comprehends complex workload optimizations

![](_page_27_Picture_4.jpeg)

![](_page_28_Picture_1.jpeg)

### GPTx

# How to provision chip area between storage and compute?

![](_page_28_Figure_4.jpeg)

![](_page_28_Picture_6.jpeg)

# **Orojenesis Performance Model**

### Input: Buffer Size

### Input: 0

![](_page_29_Figure_3.jpeg)

### Hardware TOPs and BW

![](_page_29_Figure_5.jpeg)

![](_page_29_Picture_6.jpeg)

![](_page_29_Picture_7.jpeg)

### **Output:** $|\mathbf{0}|$

# **Output:** Performance

30

![](_page_29_Picture_11.jpeg)

# **Input:** Buffer Size

![](_page_30_Figure_2.jpeg)

# **Output:** Performance

![](_page_30_Picture_6.jpeg)

### GPT3-6.7b

![](_page_31_Figure_1.jpeg)

# **Orojenesis for DSE**

![](_page_31_Figure_3.jpeg)

![](_page_31_Picture_4.jpeg)

**HW Specs:** Total chip area Area per Byte Area per MAC Backing-store BW Frequency

![](_page_31_Picture_7.jpeg)

![](_page_32_Figure_0.jpeg)

# **Orojenesis for DSE**

![](_page_32_Figure_2.jpeg)

HW Specs: Total chip area Area per Byte Area per MAC Backing-store BW Frequency

![](_page_32_Picture_5.jpeg)

![](_page_33_Figure_0.jpeg)

# **Orojenesis for DSE**

![](_page_33_Picture_2.jpeg)

Total chip area Area per Byte Area per MAC Backing-store BW Frequency

![](_page_33_Picture_5.jpeg)

![](_page_34_Picture_1.jpeg)

### GPTx

## How to provision chip area between storage and compute?

![](_page_34_Figure_4.jpeg)

![](_page_34_Picture_6.jpeg)

**#3: Orojenesis complements the roofline model to** provide buffer size suggestions

![](_page_35_Picture_4.jpeg)

# A radically new design approach for early-stage architectural DSE Offers visualization and insights for design tradeoffs Can be a powerful addon to the roofline performance model

![](_page_36_Figure_1.jpeg)

# Orojenesis

![](_page_36_Picture_4.jpeg)

# A radically new design approach for early-stage architectural DSE Offers visualization and insights for design tradeoffs Can be a powerful addon to the roofline performance model

![](_page_37_Figure_1.jpeg)

![](_page_37_Picture_2.jpeg)

# Orojenesis

### Website: <u>https://timeloop.csail.mit.edu/orojenesis</u> Artifact: <u>zenodo.org/doi/10.5281/zenodo.10850531</u>

![](_page_37_Picture_5.jpeg)

![](_page_37_Picture_7.jpeg)